Monodromy of hypergeometric functions and non-lattice integral monodromy
FONCTIONS HYPERGEOMETRIQUES
GROUPES DE MONODROMIE
ARITHMETIQUE
FORMES HERMITIENNES
ISOMETRIE
INTEGRALES
COMPACTIFICATIONS
DELIGNE
MOSTOW
M/82/46
IHES
07/1982
Deligne P. / Mostow G. D. Monodromy of hypergeometric functions and non-lattice integral monodromy. Publications Mathématiques de l’Institut des Hautes Scientifiques 63 p. 5–89 (1986). https://doi.org/10.1007/BF02831622
A4
66 f.
EN
TEXTE
PREPUBLICATION
M_82_46.pdf
1982
Geometry in total absolute curvature theory
GEOMETRIE
COURBURE
VARIETES
This is a (incomplete) report on geometrical results of the last twenty five years in the theory of total absolute curvature, in particular concerning its minimal value in certain classes of embeddings of manifolds.
KUIPER
M/84/08
IHES
03/1984
A4
12 f.
EN
TEXTE
PREPUBLICATION
M_84_08.pdf
1984
Tight embeddings and maps submanifolds of geometrical class three
GEOMETRIE DIFFERENTIELLE
ANALYSE
ALGEBRE
CALCULS NUMERIQUES
Differential geometry is a field in which geometry is expressed in analysis, algebra, and calculations, and in which analysis and calculations are sometimes understood in intuitive steps that could be called geometric.
KUIPER
M/79/24
IHES
09/1979
A4
39 f.
EN
TEXTE
PREPUBLICATION
M_79_24.pdf
1979
Stable surfaces in euclidean three space : Dedicated to Prof. W. Fenchel in Copenhagen
GEOMETRIE EUCLIDIENNE
SURFACES
STABILITE
This paper consists of two related parts. In A we present smooth maps of the real projective plane P with the non euclidean metric ?, into euclidean spaces such that we can read various interesting properties from the image. We mention and indicate some proofs of known facts. This part is expository. In B we consider C?-stable (in the sense of R. Thom) maps of surfaces in E3. We call these "stable surfaces" for short. The Gauss curvature as a measure (? K d?) then exists although the scalar Gauss curvature K may explode at the C?-stable singularities. The infimum of the total absolute curvature (2?)–1 ? |K d?| of a compact surface M equals 4 – ?(M). This infimum can be reached for any surface in the class of stable maps, but not for all surfaces in the class of immersions, as we know. Stable surfaces of minimal total absolute curvature (tight) are given for the exceptions: the projective plane with 0 or 1 handles and the Klein-bottle. Recall that tight (closed) surfaces in EN are also characterized as those that are divided into at most two (connected) parts by any (hyper-)plane.
KUIPER
M/74/14
IHES
12/1974
A4
21 f.
EN
TEXTE
PREPUBLICATION
M_74_14.pdf
1974
Metric invariants of Kähler manifolds
VARIETES KAHLERIENNES
INVARIANTS
GROMOV
M/92/86
IHES
A4
15 f.
EN
TEXTE
PREPUBLICATION
M_92_86.pdf
1992
Isoperimetry of waists and concentration of maps
INEGALITES ISOPERIMETRIQUES
ENSEMBLES CONVEXES
GROMOV
M/02/04
IHES
A4
22 f.
EN
TEXTE
PREPUBLICATION
M_02_04.pdf
2002
CAT(?)-spaces : Construction and concentration
ESPACES ABSTRAITS
GROUPES HYPERBOLIQUES
GROMOV
M/01/24
IHES
A4
18 f.
EN
TEXTE
PREPUBLICATION
M_01_24.pdf
2001
Notes sur l'histoire et la philosophie des mathématiques III. Le structuralisme en mathématiques : mythe ou réalité ?
HISTOIRE
PHILOSOPHIE
MATHEMATIQUES
STRUCTURALISME
GEOMETRIE EUCLIDIENNE
MODELES MATHEMATIQUES
ISOMORPHISMES
BOURBAKI
AXIOMATIQUE
TRANSFORMATIONS MATHEMATIQUES
THEORIE DES FONCTEURS
CARTIER
PATRAS
BOREL
M/98/28
IHES
04/1998
A4
23 f.
FR
EN
TEXTE
PREPUBLICATION
M_98_28.pdf
1998