Mean entropy of States in classical statistical mechanics
ENTROPIE
RESEAUX
PHYSIQUE STATISTIQUE
SYSTEMES COMPLEXES
Abstract : The equilibrium states for an infinite system of classical mechanics may be represented by states over Abelian C* algebras. We consider here continuous and lattice systems and define a mean entropy for their states. The properties of this mean entropy are investigated : linearity, upper semi-continuity, integral representations. In the lattice case, it is found that our mean entropy coincides with the KOLMOGOROV-SINAI invariant of ergodic theory.
RUELLE
ROBINSON
P/66/04
IHES
1966
A4
25 f.
EN
TEXTE
PREPUBLICATION
P_66_04.pdf
1966
On the Classification of Von Neumann algebras and their automophisms
ALGEBRES DE VON NEUMANN
ESPACES DE HILBERT
ISOMORPHISMES
CONNES
P/76/132
IHES
02/1976
A4
27 f.
EN
TEXTE
PREPUBLICATION
P_76_132.pdf
1976