Scaling of Mandelbrot sets generated by critical point preperiodicity

https://repo-archives.ihes.fr/FONDS_IHES/I_Prepublications/EPSTEIN/Depuis_1964/P_83_70/P_83_70.pdf

Epstein, Henri

EPSTEIN

11/1983

Astract : Letz?f?(z) be a complex holomorphic function depending holomorphically on the complex parameter ?. If, for ?=0, a critical point off0 falls after a finite number of steps onto an unstable fixed point off0, then, in the parameter space, near 0, an infinity of more and more accurate copies of the Mandelbrot set appears. We compute their scaling properties.

RESEAUX CEREBRAUX

P/83/70

©IHES

Citer ce document

EPSTEIN et ECKMANN, “Scaling of Mandelbrot sets generated by critical point preperiodicity,” Archives de l'IHES, consulté le 23 mars 2025, https://omeka.ihes.fr/document/P_83_70.pdf.